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Abstract

A comprehensive comparison of laminate failure models was established to assess the state-of-the-art in laminate modeling
technologies on an international level (known as the Worldwide Failure Olympics Exercise) [1]. This paper represents one con-
tribution (Part A) to the Exercise, where predictions for laminate response and failure behavior of various laminates under a broad

range of loading conditions are made. A method for predicting the nonlinear stress/strain response and failure behavior of com-
posite laminates is described. Predictions are based on an incremental formulation of a well-established three-dimensional lami-
nated media analysis [2] coupled with a progressive-ply failure methodology. Nonlinear lamina constitutive relations for the

composites are represented using the Ramberg–Osgood equation [3]. Piece-wise linear increments in laminate stress and strain are
calculated and superimposed to formulate the overall effective nonlinear response. Individual ply stresses and strains are monitored
to calculate instantaneous ply stiffnesses for the incremental solution and to establish ply failure levels. The progressive-ply failure

approach allows for stress unloading in a ply and discrimination of the various potential modes of failure. Laminate response and
failure predictions for 14 different cases are presented. The cases include prediction of the effective nonlinear stress-vs.-strain
responses of laminates, as well as, initial and final ply failure envelope predictions under multi-axial loading. Comparison of pre-
dictions with actual experimental data will be made in a companion paper to be published in Part B of the Exercise.

Published by Elsevier Ltd.
Keywords: Composite laminate
1. Introduction

1.1. Background

Predicting the mechanical response and failure beha-
vior of laminated composites is vitally important for
efficient design in structural applications. Few would
argue that predicting the effective laminate strain
response to mechanical load is far easier than predicting
the failure (or post failure) behavior of the laminate. It
is not surprising that this subject has received a great
wealth of attention since the early days of composite
mechanics.
Many different approaches exist for laminate failure

analysis with varied complexity and successes. Surveys
abound on the subject: Chamis [4], Sandhu [5], Soni [6],
Tsai [7], and Nahas [8]. Review of the literature reveals the
broad spectrum of approaches that are employed in lami-
nate failure prediction. With such a broad range of
approaches, predictions for particular laminate configur-
ations and loading are also likely to be widely varied.
To address this issue, a recent effort has been laun-

ched by Hinton and Soden [1] to assess the state-of-the-
art in prediction capabilities for laminate response and
failure. This effort requested originators of a variety of
laminate failure theories to make performance predic-
tions of specific carbon- and glass-fiber-reinforced
epoxy laminates subjected to a range of biaxial loads,
using the same given material properties, laminate
arrangements, and loading conditions. Each of the con-
tributors has submitted a paper documenting their pre-
dictions for 14 different laminate cases including a
report on their respective failure theory and approach
[9–20]. Specifics of the exercise are published in a sepa-
rate report [21]. The predictions submitted by the con-
0266-3538/$ - see front matter Published by Elsevier Ltd.
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tributors have been compared, and differences in their
respective approaches have been identified and dis-
cussed [22]. For the most part, the submitted laminate
predictions for stresses and strains are based on classical
laminated plate theory or a similar derivative while
laminate failure behavior is modeled with a wider vari-
ety of approaches.
This paper represents our laminate response and fail-

ure predictions to the 14 laminate cases described in
Part A of the Exercise [1]. Subsequently, we plan to
participate in Part B of the Exercise and compare our
predictions with the experimental data.

1.2. Current approach

The approach taken in our investigation is based on
the three-dimensional laminated media analysis pre-
sented by Chou et al. [2]. This analysis is similar to
Classical Laminated Plate Theory (CLPT) except that
through thickness stresses and strains are accounted for
in the formulation. Additionally, laminate curvatures
are not a permitted type of deformation, which makes
this theory more relevant to thick laminated composite
analysis. As with CLPT, ply stresses and strains are
calculated from applied average stress resultant type
mechanical loads. In-plane laminate behavior and ply
stress and strain predictions for this theory are nearly
identical to those made by CLPT for laminates which
possess balanced and symmetric lay-ups—those which
do not possess bending-twisting-coupling modes of
deformation. Specific details of the analysis are high-
lighted in the Analysis section of this paper. All of the
14 laminates cases studied in this exercise posses
balanced and symmetric architectures.
The laminated media analysis technique presented by

Chou et al. [2] was used for predicting linear-elastic
material response and failure in composite laminates
[23]. In the present study, we have extended this cap-
ability to predict nonlinear material behavior by adopt-
ing a piece-wise linear incremental approach.
Essentially, the effective nonlinear laminate stress/strain
response predictions are determined from the super-
position of piece-wise linear segments in stress and
strain during an incremental loading scheme. The indi-
vidual ply stresses and strains are computed at each step
during the incremental loading history. The effective
laminate stiffness matrix is updated at each load incre-
ment and is based on strain-dependent tangent ply
properties.
Progressive laminate failure is modeled with a max-

imum strain-based ply failure criteria and a ply modulus
discount method. When a strain allowable in any ply is
reached during the incremental laminate loading, the
associated modulus to the particular failure mode is
reduced and the corresponding load is subsequently
redistributed within in the laminate. Incremental loading
is continued until the laminate cannot sustain load with-
out undergoing excessive deformation or strain. Details of
the laminated media analysis, the piece-wise linear incre-
mental loading strategy, and the progressive ply failure
methodology are described in the following section.
2. Analysis

2.1. Three-dimensional laminate media analysis

In this work, the analytic model developed by Chou et
al. [2] is used to predict the effective laminate stress/
strain response. It is also used to calculate ply-level
stresses and strains during incremental loading for fail-
ure and strength prediction [23]. The following section
outlines the laminated media model upon which our
analysis is based.
Chou et al. [2] use a control volume approach to yield

a closed-form solution to the problem of effective
homogeneous property determination for a laminated
media composed of individual layers. Unlike the works
of White and Angona [24], Postma [25], Rytov [26],
Behrens [27], and Salamon [28], which required the
individual layers to be isotropic, Chou et al. [2] per-
mitted general anisotropy of the layers. The analysis is
based on the assumptions that all interlaminar stresses
are continuous across ply interfaces and that all in-plane
strains are continuous through the thickness dimension
of a representative volume element (i.e., a repeating
sublaminate configuration).
The following expression is used to represent the

effective (i.e., homogeneous) stress/strain constitutive
relationship for an N-layered laminate (see Fig. 1):

��
i ¼ C

�

ij"
�
j for ði; j ¼ 1; 2; 3; 4; 5; 6Þ: ð1Þ

The barred notation is used to denote that the rela-
tionship applies in the global x–y–z coordinate system
of the laminate. The asterisk superscript is used here to
denote the ‘‘average’’ or effective laminate stress and strain
quantities. In-plane strains are assumed uniform (i.e.,
Fig. 1. Laminate configuration.
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constant within each ply) and equal to the effective strains
of the laminate. Mathematically, this is expressed as

"ki ¼ "�i for ði ¼ 1; 2; 6; k ¼ 1; 2; . . . ;NÞ; ð2Þ

where "ki represents the strain in the kth ply of the lami-
nate (see ply numbering convention in Fig. 1). To
ensure stress continuity across ply interfaces, all ply
stress components associated with the out-of-plane
direction (i.e., z-direction) are assumed uniform and
equal to the corresponding effective stresses in the
laminate. Mathematically, this is expressed as

�k
i ¼ ��

i for ði ¼ 3; 4; 5; k ¼ 1; 2; . . . ;NÞ; ð3Þ

where �k
i represents the stress in the kth ply of the

laminate.
All remaining effective laminate strains and stresses are

assumed to be the volume average of all their corre-
sponding ply strain and stress components, respectively.
Mathematically, these assumptions are expressed as

"�i ¼
XN
k¼1

Vk"ki for ði ¼ 3; 4; 5Þ ð4Þ

and

��
i ¼

XN
k¼1

Vk�k
i for ði ¼ 1; 2; 6Þ; ð5Þ

where Vk is the ratio of the original (i.e., undeformed)
volume of the kth ply over the original volume of the
entire laminate. The constitutive equation for each ply
in the laminate is written below [Eq. (6)] using the
superscript notation.

�k
i ¼ Ck

ij "
k
j for ði; j ¼ 1; 2; 3; 4; 5; 6; k ¼ 1; 2; . . . ;NÞ: ð6Þ

(For completeness, the ply stiffness matrix coefficients
(Ck

ij ) are defined in terms of the lamina engineering
constants and layer orientations in the Appendix)
Eqs. (1)–(6) represent 12N+6 linear algebraic equa-

tions with 12N+12 unknowns. Solution to Eqs. (1)–(6)
yields the following effective three-dimensional stress/
strain constitutive relation, which can be used as an
equivalent (i.e., homogeneous) representation for the
laminated media where the coefficients in the laminate
stiffness matrix, Ck

ij , are given by

C
�

ij ¼
XN
k¼1

Vk Ck
ij �

Ck
13C

k
3j

Ck
33

þ

Ck
i3

PN
‘¼1

V ‘Ck
3j

Ck
33

Ck
33

PN
‘¼1

V ‘Ck
ij

Ck
33

2
666664

3
777775

for ði; j

¼ 1; 2; 3; 6Þ; ð7Þ
C
�

ij ¼ C
�

ji ¼ 0 for ði ¼ 1; 2; 3; 6; j ¼ 4; 5Þ ð8Þ

and

C
�

ij ¼

PN
k¼1

Vk

Dk
Ck

ij

PN
k¼1

PN
‘¼1

VkV ‘

DkD‘
Ck
44C

k
55 � Ck

45C
k
54

	 


2
6664

3
7775 for ði; j ¼ 4; 5Þ;

ð9Þ

where

Dk ¼
Ck
44 Ck

45

Ck
54 Ck

55

�����
����� ¼ Ck

44 Ck
55 � Ck

45 Ck
54: ð10Þ

The effective stress/strain constitutive relation for the
laminatedmedia is therefore given by Eqs. (1) and (7)–(10).
In determining the individual ply-level stresses and

strains, the assumption is made that the applied mechan-
ical loading on the laminated media (��

i ) is known, uni-
form, and represents the ‘average’ or ‘effective’ stress
acting on the sublaminate configuration. The associated
‘‘effective’’ or ‘‘smeared’’ laminate strains ("�i ) can be
obtained directly from the inversion of Eq. (1). From the
assumption made in Eq. (2), all in-plane strain values
(defined in the global x–y–z coordinate system) for plies
1 through N are therefore known. Similarly, from the
assumption made in Eq. (2), all out-of-plane stresses for
plies 1 through N are known (also defined in the global
x–y–z coordinate system). The out-of-plane ply strains
and in-plane ply stresses remain to be determined.
Sun and Liao [29] derived the following expression for

determination of the remaining out-of plane ply strains

"k3
"k4
"k5

2
64

3
75¼

Ck
33C

k
34C

k
35

Ck
43C

k
44C

k
45

Ck
53C

k
54C

k
55

2
64

3
75

�1
�k
3

�k
4

�k
5

2
64

3
75�

Ck
31C

k
32C

k
36

Ck
41C

k
42C

k
46

Ck
51C

k
52C

k
56

2
64

3
75

"k1
"k2
"k6

2
64

3
75

2
64

3
75:

ð11Þ

Once all of the ply strains are known, the remaining in-
plane ply stresses can be calculated straightforwardly
through the following relation

�k
1

�k
2

�k
6

2
64

3
75 ¼

Ck
11C

k
12C

k
13C

k
14C

k
15C

k
16

Ck
21C

k
22C

k
23C

k
24C

k
25C

k
26

Ck
61C

k
62C

k
63C

k
64C

k
65C

k
66

2
64

3
75

"k1
"k2
"k3
"k4
"k5
"k6

2
666666664

3
777777775
: ð12Þ

2.2. Defining nonlinear lamina constitutive relations

Material nonlinearity in our laminate analysis is
accounted for on the lamina or ply level. The nonlinear
T.A. Bogetti et al. / Composites Science and Technology 64 (2004) 329–342 331



lamina constitutive relations (i.e., stress-vs.-strain rela-
tions) for each of the principal lamina directions are
defined with the Ramberg–Osgood equation [3]. For the
treatment of unidirectional lamina in our three-dimen-
sional analysis, this would include the fiber direction (1),
in-plane transverse direction (2), transverse normal
direction (3), interlaminar shear directions (23 and 13),
and the in-plane shear direction (12).
The Ramberg–Osgood equation provides an expres-

sion for stress written explicitly in terms of strain and
three unique parameters,

� ¼
Eo"

1þ
Eo"

�o

� 
n� 
1
n

: ð13Þ

here Eo is the initial modulus, �o is the asymptotic stress
level, and n is a shape parameter for the stress versus
strain curve. Fig. 2 graphically illustrates the sig-
nificance of these parameters with a typical nonlinear
stress-vs.-strain relationship.
For computational considerations, it is desired to

define the instantaneous or tangent lamina stiffness as a
continuous function of strain. Taking the derivative of
Eq. (13) with respect to strain, the following expression
is obtained:

Et ¼
d�

d"
¼

Eo

1þ
Eo"

�o

� 
n� 
1þ1
n

; ð14Þ

where Et is the instantaneous or tangent lamina stiffness
modulus expressed explicitly in terms of strain and the
three Ramberg–Osgood parameters.
Aunique setofRamberg–Osgoodparameters for eachof

the principal directions in the lamina is required. A fitting
routine was implemented to find the Ramberg–Osgood
parameters which realistically represent the stress/strain
responseforeachofthefourmaterialsused in the study. As
an example, the data fit to Eq. (13) is illustrated in Fig. 3
for the nonlinear 12-shear direction stress/strain
response of the E-glass/MY750 material. A full account
of all the Ramberg–Osgood parameters used in our
analysis is provided in the Results section of this paper.

2.3. Incremental approach (solution strategy)

The nonlinear response of the laminate is generated
through the summation of piece-wise linear increments in
stress over a pre-established load schedule. An incre-
mental form of Eq. (1) is used to determine the linear
increments in laminate stress-and-strain. The laminate
stiffness matrix is updated at the end of each stress incre-
ment (based on all current ply strain levels) during the
incremental loading strategy. The schematic presented
in Fig. 4 provides a mathematical representation of the
incremental loading strategy for an arbitrary laminate.
Assume that at point (a), corresponding to the end of

the nth stress increment, the strain and stress state of the
laminate is known ("�nj ; ��n

i ). From this point, the
objective is to determine the strain and stress state at
point (b) or ("�nþ1j ; ��nþ1

i ). The effective laminate stiff-
ness matrix at the end of stress increment n, C

�

ij
n, is

computed from an incremental form of the laminated
media model constitutive relation, Eq. (1). With the
increment in load defined, D��n

i , the corresponding
increment in laminate strain, D"�nj , is calculated from an
inverse form of Eq. (1):

D"�i ¼ C
�

ij

h i
�1D��

i ; ði; j ¼ 1; 2; 3; 4; 5; 6Þ: ð15Þ

Individual ply stress and strain increments are calcu-
lated according to the equations presented previously. A
332 T.A. Bogetti et al. / Composites Science and Technology 64 (2004) 329–342
Fig. 2. Ramberg–Osgood parameters definitions.
Fig. 3. Ramberg–Osgood parameters fit to E-glass/MY750 epoxy

data.



cumulative summation is maintained to track the total
stress-and-strain levels in each ply of the laminate. The
tangent modulus values for each ply and material
direction are calculated according to Eq. (14) and used
in the determination of the laminate stiffness matrix for
the next laminate stress increment calculation.
The entire nonlinear response for the laminate is

obtained by the cumulative sum of all stress and strain
increments throughout the entire stress loading history.
The implementation of a progressive ply failure metho-
dology into this incremental loading strategy is descri-
bed in the next section.

2.4. Lamina failure methodology

Failure of individual plies and their effect on the
overall laminate response during incremental loading
are accounted for in our analysis. Our ply failure pre-
dictions are based on the well-established Maximum
Strain Failure Criterion [8,30]. The Maximum Strain
Failure Criterion predicts that a material will fail when
the strain in any direction exceeds its corresponding
allowable level. The principal ply strains in the six
directions ("1, "2, "3, "4, "5, and "6) are compared to
their corresponding maximum strain allowables:

if "1 > 0 and if "1 > Y1T;

then the failure mode is fiber tension;
ð16aÞ

if "1 < 0 and if j"1j > Y1C;

then the failure mode is fiber compression;

ð16bÞ

if "2 > 0 and if "2 > Y2T;

then the failure mode is transverse tension;

ð16cÞ
if "2 <0 and if j"2j > Y2C;

then the failure mode is transverse compression;

ð16dÞ

if "3 > 0 and if "3 > Y3T;

then the failure mode is transverse tension;

ð16eÞ

if "3 < 0 and if j"3j > Y3C;

then the failure mode is transverse compression;

ð16fÞ

if j"4j > Y23;

then the failure mode is interlaminar shear;

ð16gÞ

if j"5j > Y13;

then the failure mode is interlaminar shear;

ð16hÞ

and if j"6j > Y12;

then the failure mode is in� plane shear:

ð16iÞ

In Eqs. (16a)–(16i), Y1T is the maximum tensile strain
in the 1-direction (longitudinal), Y1C is the maximum
compressive strain in the 1-direction, Y2T is the max-
imum tensile strain in the 2-direction (transverse), Y2C
is the maximum compressive strain in the 2-direction,
Y3T is the maximum tensile strain in the 3-direction
(out-of-plane), Y3C is the maximum compressive strain
in the 3-direction, Y23 is the maximum shear strain in
the 23-plane, Y13 is the maximum shear strain in the 13-
plane, and Y12 is the maximum shear strain in the 12-
plane.
As the laminate is loaded and laminate strains develop,

the individual ply strains are monitored. When ply fail-
ure is predicted in any ply, according to the maximum
strain failure criteria, the incremental loading to that
point is stopped and the entire laminate stress vs. strain
response is recorded. The modulus associated with the
particular mode of failure in the failed ply is then reduced
to an insignificant value (as well as the associated Pois-
son’s ratio), and the incremental loading strategy is
repeated from the beginning (all stresses and strains are
set to zero). The loading procedure is continued until
the next failure in a ply is detected. The corresponding
modulus value is again discounted, the laminate
response is recorded, and the procedure is repeated.
This progressive ply failure response is repeated until
final failure is determined, which is assumed when the
T.A. Bogetti et al. / Composites Science and Technology 64 (2004) 329–342 333
Fig. 4. Incremental laminate loading methodology.



laminate looses sufficient stiffness such that it cannot carry
any load without undergoing an arbitrarily excessive
amount of deformation (say greater than 5% strain).
The entire laminate response is determined by the

stress vs. strain response up to the point of failure, and
then the load is assumed to drop to the level of the
subsequent stress vs. strain curve response. The load
path then continues until failure and drops again. This
methodology essentially corresponds to progressive ply
failure where the load in failure plies is redistributed to
adjacent plies under a displacement controlled load path
history.

2.5. Thermal residual stresses

Thermal residual stresses resulting from thermal
expansion mismatch in adjacent plies in the laminates
during cool down from the stress-free state at the cure
temperature were not accounted for in the predictions.
Their actual calculation follows straightforwardly from
the analysis derivation described in the previous section.
For completeness, however, a full description of their
determination is given elsewhere [23]. It is acknowl-
edged that the inclusion of thermal residual stresses will
have some effect on the ultimate laminate strength pre-
dictions. The exact effect, however, will depend on the
specific laminate architecture and loading considered.

2.6. Analysis execution

The aforementioned laminate analysis and pro-
gressive ply failure methodology has been programmed
into a FORTRAN-based software code entitled
LAM3DNL. The LAM3DNL code employs a user-
friendly database format for input of laminate archi-
tectures, lamina properties, and failure parameters [23].
Output from the code includes the effective laminate
stress and strain files as well as a failure assessment
summary file that identifies all ply failures that occur
during a laminate response prediction program run.
3. Results and discussion

3.1. Test case summary

In this section, we present predictions for the 14 dif-
ferent laminate test cases described by Soden et al. [21].
These cases have been grouped into three classes (a)
biaxial failure envelopes of unidirectional lamina, (b)
bidirectional failure envelopes of multidirectional lami-
nates, and (c) stress vs. strain curves of laminates under
uniaxial and biaxial loading. For completeness, a sum-
mary of the test cases is presented in Table 1 [21,22]. It
is also noted that 4 different materials were included in
the study: (a) E-glass/MY750 epoxy, (b) E-glass/LY556
epoxy, (c) T300 graphite/BSL 914C epoxy, and (d) AS4
graphite/3501-6 epoxy.

3.2. Lamina properties and failure allowables

Lamina material properties and failure allowables
were provided by Soden et al. [21]. Since the required
three-dimensional material properties for our analysis
were not available, we have made some assumptions in
order to represent the through-the-thickness material
response. Upon examining the data provided in [21], we
have made the reasonable assumption that the long-
itudinal and transverse lamina responses are linear. We
also assume that the material properties are transversely
isotropic such that E3=E2, G13=G12, and �13 ¼ �12.
Accordingly, the interlaminar shear modulus is assumed
linear according to G23=E2/2(1+	23). Additionally we
assume �23 ¼ 0:40 for all materials. It is noted that the
predominant source of nonlinearity in our predictions is
from the 12 shear response through G12.
We fit the lamina material properties to the Ramberg–

Osgood equation for input into the analysis. As stated
previously, the longitudinal and transverse properties
were assumed linear. To capture the linear behavior
with the Ramberg–Osgood equation, a linear modulus
was assumed as the initial modulus parameter (Eo), an
asymptotic stress level (�o) was assumed which is much
higher than the actual strength of the material and an
arbitrarily high shape factor as also used (n=10). This
approach ensures that a linear modulus is used during
the entire incremental loading history.
The stress-vs.-strain data provided in the exercise for

the shear material responses were fit to Eq. (13). A
summary of all fitted Ramberg–Osgood parameters for
the four materials are summarized in Table 2. Max-
imum strain failure allowables were also provided by
Soden et al. [21] and are summarized in Table 3.

3.3. Results for selected case studies

3.3.1. Biaxial failure envelopes of unidirectional lamina
(cases 1, 2, and 3)
The biaxial failure envelope predictions of unidirec-

tional lamina of the E-glass/LY556 epoxy under trans-
verse and shear loading (�y vs. 
xy) are presented in
Fig. 5. The typical rectangular-shaped curve results
from the failure strain in each direction being assumed
independent of the other directions. For this loading
case, the initial and final failure envelopes coincide
everywhere except in the second quadrant, where the
Poisson’s effects result in early transverse tensile failure
occurring in the 3-direction prior to the final transverse
compressive failure in the 2-direction. This is similar to
the transverse tensile failures that have occurred during
axial compression of [0/+30/0/�30]2S laminates in
other studies [31].
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Table 1

Details of the laminates and loading cases [22]
Loading case
 Laminate lay-up
 Material
 Description of loading cases
1
 0
 E-glass/LY556/HT907/DY063
 Biaxial failure stress envelope under transverse and shear loading (�y vs. 
xy)
2
 0
 T300/BSL914C
 Biaxial failure stress envelope under longitudinal and shear loading (�x vs. 
xy)
3
 0
 E-glass/MY750/HY917/DY063
 Biaxial failure stress envelope under long. and transverse loading (�y vs. �x)
4
 90/�30/90
 E-glass/LY556/HT907/DY063
 Biaxial failure stress envelope (�y vs. �x)

5
 90/�30/90
 E-glass/LY556/HT907/DY063
 Biaxial failure stress envelope (�x vs. 
xy)
6
 0/�45/90
 AS4/3501-6
 Biaxial failure stress envelope (�y vs. �x)
7
 0/�45/90
 AS4/3501-6
 Stress–strain curves under uniaxial tensile loading in y direction (�y:�x=1:0)
8
 0/�45/90
 AS4/3501-6
 Stress–strain curves for (�y:�x=2:1)
9
 �55
 E-glass/MY750/HY917/DY063
 Biaxial failure stress envelope (�y vs. �x)
10
 �55
 E-glass/MY750/HY917/DY063
 Stress–strain curves under uniaxial tensile loading for (�y:�x=1:0)
11
 �55
 E-glass/MY750/HY917/DY063
 Stress–strain curves for (�y:�x=2:1)
12
 0/90
 E-glass/MY750/HY917/DY063
 Stress–strain curve under uniaxial tensile loading for (�y:�x=0:1)
13
 �45
 E-glass/MY750/HY917/DY063
 Stress–strain curves for (�y:�x=1:1)
14
 �45
 E-glass/MY750/HY917/DY063
 Stress–strain curves for (�y:�x=1:�1)
Table 2

Ramberg–Osgood parameters for nonlinear analysis (and Poisson’s ratio)
Material and its parameters
 Spacial directions for constitutive modeling
1
 2
 3
 12
 13
 23
AS4/3501-6
E0 (GPa)
 126
 11
 11
 6.80
 6.80
 3.79
�0 (GPa)
 100
 100
 100
 0.097
 0.097
 100
n
 10
 10
 10
 1.96
 1.96
 10
	
 –
 –
 –
 0.28
 0.28
 0.40
T300/BSL914C
E0 (GPa)
 138
 11
 11
 5.94
 5.94
 3.79
�0 (GPa)
 100
 100
 100
 0.083
 0.083
 100
n
 10
 10
 10
 2.05
 2.05
 10
	
 –
 –
 –
 0.28
 0.28
 0.40
E-glass/LY556
E0 (GPa)
 53.5
 17.7
 17.7
 6.36
 6.36
 6.10
�0 (GPa)
 100
 100
 100
 0.076
 0.076
 100
n
 10
 10
 10
 1.85
 1.85
 10
	
 –
 –
 –
 0.278
 0.278
 0.40
E-glass/MY750
E0 (GPa)
 45.6
 16.2
 16.2
 6.42
 6.42
 5.59
�0 (GPa)
 100
 100
 100
 0.077
 0.077
 100
n
 10
 10
 10
 1.80
 1.80
 10
	
 –
 –
 –
 0.278
 0.278
 0.40
Table 3

Maximum strain failure allowables
Material
 Y1T (%)
 Y1C (%)
 Y2T (%)
 Y2C (%)
 Y3T (%)
 Y3C (%)
 Y23 (%)
 Y13 (%)
 Y12 (%)
AS4/3501-6
 1.38
 �1.18
 0.44
 �2.00
 0.44
 �2.00
 2.00
 2.00
 2.00
T300/BSL914C
 1.09
 �0.65
 0.25
 �1.82
 0.25
 �1.82
 4.00
 4.00
 4.00
E-glass/LY556
 2.13
 �1.07
 0.20
 �0.64
 0.20
 �0.64
 3.80
 3.80
 3.80
E-glass/MY750
 2.81
 �1.75
 0.25
 �1.20
 0.25
 �1.20
 4.00
 4.00
 4.00



The biaxial failure stress envelope for unidirectional
T300/BSL914C under longitudinal and shear loading
(�x vs. 
xy) is shown in Fig. 6. Like the previous case,
this case again shows a rectangular-shaped curve with
shear- and axial-type failures occurring independently
of other failure modes. There were no initial failures
occurring prior to final fracture for this loading curve.
The biaxial failure stress envelope for loading case 3,

unidirectional E-glass/MY750 under transverse and
longitudinal loading (�y vs. �x), is shown in Fig. 7. For
this failure case, the final tensile and compressive failures
in the fiber direction (�x) are almost independent of the
transverse stress-state. The tensile and compressive fail-
ures in the transverse (�y) direction are strongly influ-
enced by the axial (�x) stress due to the Poisson’s effects
in the material. The initial failures that are predicted in
the graph are tensile failures in the 3-direction due to
Poisson’s effects, similar to those predicted in case 1.

3.3.2. Bidirectional failure envelopes of multi-directional
laminates (cases 4–6 and 9)
For loading case 4, the biaxial failure stress envelope

(�y vs. �x) of the [90/�30/90]s E-glass/LY556 laminate
is shown in Fig. 8. For this failure envelope, the failure
modes are strongly influenced by the biaxial stress-state
in all directions. The laminates also experience initial
failures prior to final fracture for all loading directions.
Details of the progressive failure for loading case 4 are
presented in Table 4.
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Fig. 5. Loading case 1: biaxial failure envelope (�y vs. 
xy) and failure

modes for [0] E-glass/LY556 epoxy.
Fig. 6. Loading case 2: biaxial failure envelope of (�x vs. 
xy) and
failure modes for [0] T300 graphite/BSL 914C epoxy.
Fig. 7. Loading case 3: biaxial failure envelope of (�y vs. �x) and fail-

ure modes for [0] E-glass/MY750 epoxy.
Fig. 8. Loading case 4: biaxial failure envelope (�y vs. �x) and failure

modes for [90/+30/�30]s E-glass/LY556 epoxy. (See Table 4 for ply

failure details.)



The biaxial failure envelope (�x vs. 
xy) for the same
[90/�30/90]s laminate of E-glass/LY556 epoxy (loading
case 5) is shown in Fig. 9. Like loading case 4, the fail-
ure modes are strongly influenced by the biaxial stress-
state in all directions, and the laminates also experience
initial failures prior to final fracture for all of the load-
ing directions. Details of the progressive failure for
loading case 5 are presented in Table 5.
Fig. 10 shows the biaxial failure envelope (�y vs. �x)

for the quasi-isotropic [0/�45/90]s laminate of AS4/
3501-6 (loading case 6). The biaxial failure envelope (�y
vs. �x) for [+55/�55]s E-glass/MY750 epoxy (loading
case 9) is shown in Fig. 11. Details of the progressive
failure for loading cases 6 and 9 are presented in
Tables 6 and 7, respectively.

3.3.3. Stress vs. strain curves of laminates under
uniaxial and biaxial loading (cases 7, 8, 10–14)
Cases 7 and 8 predict the stress-strain response of the

quasi-isotropic [0/�45/90]s laminate of AS4/3501-6
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Table 4

Damage modes in the failure envelope for the [90/�30/90]s laminate

shown in Fig. 8
Loading

case
Damage

modes
Failed

plies
Stress levels (MPa)
�y
 �x
4
 Y2T
 90	
 0
 61
Ratio:
 Y1C
 90	
 0
 474
0:1
 Y2C
 �30	
 0
 315
4
 Y2T
 �30	
 73
 73
Ratio:
 Y2T
 90	
 91
 91
1:1
 Y1T
 90	
 357
 357
4
 Y2T
 �30	
 68
 0
Ratio:
 Y1T
 90	
 254
 0
1:0
 Y2C
 90	
 74
 0
4
 Y2T
 �30	
 61
 �61
Ratio:
 Y2C
 90	
 120
 �120
1:-1
 Y1T
 90	
 193
 �193
4
 Y2C
 90	
 0
 �187
Ratio:
 Y3T
 all
 0
 �344
0:-1
 Y2T
 �30	
 0
 �383
Y1C
 �30	
 0
 �403
4
 Y3T
 all
 �97
 �97
Ratio:
 Y2C
 �30	
 �231
 �231
�1:-1
 Y1C
 90	
 �192
 �192
4
 Y2T
 90	
 �132
 0
Ratio:
 Y3T
 all
 �152
 0
�1:0
 Y2C
 �30	
 �200
 0
4
 Y2T
 90	
 �89.5
 21
Ratio:
 Y3T
 all
 �170.4
 40
�4.26:1
 Y2C
 �30	
 �196.0
 46
Fig. 9. Loading case 5: biaxial failure envelope of (�x vs. 
xy) and

failure modes for [90/+30/�30]s E-glass/LY556 epoxy. (See Table 5

for ply failure details.)
Fig. 10. Loading case 6: biaxial failure envelope (�y vs. �x) and failure
modes for [0/+45/�45/90]s AS4 graphite/3501-6 epoxy. (See Table 6

for ply failure details.)
Fig. 11. Loading case 9: biaxial failure envelope (�y vs. �x) and failure

modes for [+55/�55]s E-glass/MY750 epoxy. (See Table 7 for ply

failure details.)



used in case 6. The predictions for (�y:�x=1:0) are
shown in Fig. 12, and the predictions for (�y:�x=2:1)
are shown in Fig. 13. In both of these cases, the mate-
rials display linear behavior with several initial failures
prior to the ultimate failure of the laminate.
Cases 10 and 11 predict the stress–strain response of a

[+55/�55]s laminate of E-glass/MY750 epoxy. The
curves for loading applied in the y-direction (�y:�x=1:0)
are shown in Fig. 14. In this case, the loading results in
shear loading on the ply-level; thus, the laminate dis-
plays nonlinear behavior until failure. For the case
where a biaxial load (�y:�x=2:1) is applied (Fig. 15), the
mechanical response is more linear until final fracture,
although some nonlinearity (due to in-plane shearing) is
evident near the point of ultimate failure.
The stress–strain curves for uniaxial tension

(�y:�x=0:1) of a [0/90]s E-glass/MY750 laminate (case
12) is shown in Fig. 16. The final load cases, stress-strain
curves for the biaxial loading of [+45/-45]s laminates of
E-glass/MY750 epoxy, are shown in Figs. 17 and 18.
For case 13, where �y=�x, the strains in the x and y
directions are equivalent so one curve is shown in
Fig. 17. Fig. 18 shows that for case 14, where �y=��x,
338 T.A. Bogetti et al. / Composites Science and Technology 64 (2004) 329–342
Table 5

Damage modes in the failure envelope for the [90/�30/90]s laminate

shown in Fig. 9
Loading

case
Damage

modes
Failed

plies
Stress levels (MPa)
�x
 
xy
5
 Y2T
 90	
 61
 0
Ratio:
 Y1C
 90	
 474
 0
1:0
 Y2C
 �30	
 311
 0
5
 Y2T
 90	&�30	
 60
 60
Ratio:
 Y2C
 +30	
 164
 164
1:1
 Y1T
 +30	
 278
 278
5
 Y2T
 �30	
 0
 56
Ratio:
 Y2C
 +30	
 0
 186
0:1
 Y1C
 �30	
 0
 239
Y2C
 90	
 0
 45
5
 Y2T
 �30	
 �110.4
 47
Ratio:
 Y2C
 90	
 �185.6
 79
�2.35:1
 Y1C
 �30	
 �253.8
 108
5
 Y2C
 90	
 �186
 0
Ratio:
 Y3T
 all
 �344
 0
�1:0
 Y2T
 �30	
 �383
 0
Y1C
 �30	
 �403
 0
Table 6

Damage modes in the failure envelope for the [0/�45/90]s laminate

shown in Fig. 10
Loading

case
Damage

modes
Failed

plies
Stress levels (MPa)
�y
 �x
6
 Y2T
 0	
 0
 224
Ratio:
 Y2T
 �45	
 0
 592
0:1
 Y1T
 90	
 0
 625
6
 Y2T
 all
 318
 318
Ratio:1:1
 Y1T
 all
 860
 860
6
 Y2T
 90	
 224
 0
Ratio:
 Y2T
 �45	
 592
 0
1:0
 Y1T
 0	
 625
 0
6
 Y2T
 90	
 171
 �171
Ratio:
 Y12
 �45	
 362
 �362
1:-1
 Y1C
 90	
 386
 �386
6
 Y1C
 90	
 0
 �582
Ratio:0:-1
 Y2T
 90	
 0
 �254
6
 Y3T
 all
 �395
 �395
Ratio:-1:-1
 Y1C
 all
 �849
 �849
6
 Y1C
 0	
 �582
 0
Ratio:-1:0
 Y2T
 0	
 �254
 0
6
 Y2T
 0	
 �171
 171
Ratio:
 Y12
 �45	
 �362
 362
�1:1
 Y1C
 0	
 �386
 386
Table 7

Damage modes in the failure envelope for the [�55]s laminate shown

in Fig. 11
Loading

case
Damage

modes
Failed

plies
Stress levels (MPa)
�y
 �x
9
 Y2T
 �55	
 0
 70
Ratio:0:1
 Y12
 �55	
 0
 104
9
 Y2T
 �55	
 77
 77
Ratio:1:1
 Y12
 �55	
 202
 202
9
 Y12
 �55	
 281
 0
Ratio:1:0
 Y2C&3T
 �55	
 140
 0
9
 Y3T
 �55	
 0
 �128
Ratio: 0:-1
 Y2C
 �55	
 0
 �183
Y12
 �55	
 0
 �104
9
 Y3T
 �55	
 �158
 �79
Ratio:-2:-1
 Y1C
 �55	
 �706
 �353
9
 Y2T
 �55	
 �204
 0
Ratio:-1:0
 Y12
 �55	
 �209
 0
Table 8

Damage modes in the stress–strain curves
Loading

case
Laminate

lay-up
Failure

modes
Failed

plies
Stress levels (MPa)
�x
 �y
7
 [0/�45/90]s
 Y2T
 90	
 0
 224
Y2T
 �45	
 0
 592
Y1T
 0	
 0
 625
8
 [0/�45/90]s
 Y2T
 90	
 132
 264
Y2T
 �45	
 203
 406
Y1T
 0	
 367
 734
10
 [�55]s
 Y12
 �55	
 0
 281
11
 [�55]s
 Y2T
 �55	
 82
 164
Y1T
 �55	
 414
 828
12
 [0/90]s
 Y2T
 90	
 78
 0
Y1T
 0	
 634
 0
13
 [�45]s
 Y2T
 �45	
 92
 92
Y1T
 �45	
 621
 621
14
 [�45]s
 Y12
 �45	
 0
 75



the strains are equal and opposite in the
and y direc-
tions, with both directions displaying significant non-
linear behavior.
Details of the progressive ply failures in loading cases

7–14 are summarized in Table 4. In particular, each
level in loading where failure in a ply occurs is indicated.
The associated ply and mode of failure for each failure
load level are also given.
4. Conclusions

A methodology has been presented for predicting the
nonlinear response and progressive failure of composite
laminates. The predictions are based on an incremental
formulation of a well-established three-dimensional
laminated media analysis [2] coupled with a progressive
ply failure methodology. Nonlinear lamina constitutive
relations for the composite are represented using the
Ramberg–Osgood equation [3]. Piece-wise linear incre-
ments in laminate stress and strain are calculated and
superimposed to formulate the overall effective non-
linear response. Individual ply stresses and strains are
monitored to calculate instantaneous ply stiffnesses for
the incremental solution and to establish ply failure
levels. The progressive-ply failure approach is used to
allow for stress unloading in a ply and discrimination of
the various potential modes of failure.
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Fig. 12. Loading case 7: stress–strain curves (�y:�x=1:0) and failure

modes for [0/+45/�45/90]s AS4 graphite/3501-6 epoxy.
Fig. 13. Loading case 8: stress–strain curves (�y:�x=2:1) and failure

modes for [0/+45/�45/90]s AS4 graphite/3501-6 epoxy.
Fig. 14. Loading case 10: stress–strain curves (�y:�x=1:0) and the

final failure mode for [+55/�55]s E-glass/MY750 epoxy.
Fig. 15. Loading Case 11: stress–strain curves (�y:�x=2:1) for [+55/

�55]s E-glass/MY750 epoxy with the initial and final failure modes.



The laminate response predictive capability presented
in this paper is unique in relation to other existing cap-
abilities. By adopting the three-dimensional laminated
media theory, we are able to capture through-the-thick-
ness effects in laminate response, which is particularly
important for thick laminate analysis, where inter-
laminar loads may be of concern. The theory presented
in this work is easily adapted for implementation in the
design and failure assessment of composite structures.
Employing the three-dimensional laminate analysis pre-
sented here and the widely accepted ‘‘smearing-
unsmearing’’ approach [2], the authors have developed
a computer software code, LAMPAT [32], that is parti-
cularly useful for the analysis and design of thick-sec-
tion composite structures.
In this paper, we have presented our prediction for
biaxial failure envelopes and stress–strain curves for 14
different cases originally proposed by Hinton, Soden and
Kaddour, Refs. [1,21]. The cases include prediction of the
effective nonlinear stress-vs.-strain responses of laminates
as well as initial and final ply failure envelop predictions.
Comparison of these predictions with the actual experi-
mental data will be made in a companion paper, Ref. [34],
in Part C of the Worldwide Failure Olympics Exercise.
Uncited table

Table 8
Appendix. Lamina stiffness matrix coefficients

In this Appendix the lamina stiffness matrix coeffi-
cients are defined in terms of the lamina engineering
constants and ply orientations. In the following
descriptions, the primed notation will be used to denote
the principal material coordinate system while the bar-
red notation will be used to denote the global material
coordinate system. By definition, the three-dimensional
Hooke’s Law linear-elastic stress–strain constitutive
relation for an individual lamina is written in the fol-
lowing contracted form
�
0k
i ¼ C0

ijk�
0k
j for ði; j ¼ 1; 2; 3; 4; 5; 6Þ ðA1Þ

where C0
ij
k represents the lamina stiffness matrix

defined in the principal material coordinate system. The
orthotropic lamina stiffness matrix is symmetric (i.e.,
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Fig. 16. Loading case 12: stress–strain curves (�y:�x=0:1) for [0/90]s

E-glass/MY750 epoxy with the initial and final failure modes.
Fig. 17. Loading case 13: stress–strain curve (�y:�x=1:1) for [+45/

�45]s E-glass/MY750 epoxy with the initial and final failure modes.
Fig. 18. Loading case 14: stress–strain curves (�y:�x=1:-1) for [+45/

�45]s E-glass/MY750 epoxy with the final failure fode.



C0
ij
k=C0

ji
k for i, j=1, 2, 3, 4, 5, 6) and takes the following

form [33]

C0
ijk ¼

C0
11 C0

12 C0
13 0 0 0

C0
12 C0

22 C0
23 0 0 0

C0
13 C0

23 C0
33 0 0 0

0 0 0 C0
44 0 0

0 0 0 0 C0
55 0

0 0 0 0 0 C0
66

2
6666664

3
7777775

ðA2Þ

The non-zero stiffness coefficients of the lamina stiffness
matrix coefficients are defined in terms of the lamina
engineering constants according to

C0
11 ¼ 1� 	223E3=E2

� �
E1=V

C0
12 ¼ 	12 þ 	13	23E3=E2ð ÞE2=V

C0
13 ¼ 	13 þ 	12	23ð ÞE3=V

C0
22 ¼ 1� 	213E3=E1

� �
E2=V

C0
23 ¼ 	23 � 	12	13E2=E1ð ÞE3=V

C0
33 ¼ 1� 	212E2=E1

� �
E3=V

C0
44 ¼ G23

C0
55 ¼ G13

C0
66 ¼ G12 ðA3Þ

where

V ¼ 1� 	12 	12E2=E1 þ 2	23	13E3=E1ð Þ � 	213E3=E1

� 	223E3=E2

To define lamina stiffness coefficients in the global
laminate system, transformation matrices for ply stress
and ply strain between the principal (1, 2, 3) and global
(x,y,z) coordinate systems is first considered. The global
(barred) ply stresses, �% i

k, can be expressed explicitly in
terms of the principal ply stresses, �0

i
k, and the ply

orientation angle, 
 (see Fig. 1). Mathematically, this
transformation is accomplished with the following sec-
ond-order tensor transformation

�%ki T 
ð Þ½ 

�
ij�

0k
j ðA4Þ

where the stress transformation matrix is given by

T 
ð Þ½ 

�
ij¼

m2 n2 0 0 0 2mn
n2 m2 0 0 0 �2mn
0 0 1 0 0 0
0 0 0 m �n 0
0 0 0 n m 0

�mn mn 0 0 0 m2 � n2
� �

2
6666664

3
7777775

ðA5Þ

and where m=cos 
 and n=sin 
. Similarly, global ply
strains are obtained according to

"%ki ¼ T 
ð Þ½ 

"
ij"

0k
j ðA6Þ

where the strain transformation matrix is given by
T 
ð Þ½ 

"
ij¼

m2 n2 0 0 0 �mn
n2 m2 0 0 0 mn
0 0 1 0 0 0
0 0 0 m �n 0
0 0 0 n m 0

�2mn 2mn 0 0 0 m2 � n2
� �

2
6666664

3
7777775

ðA7Þ

The lamina stress–strain constitutive relationship,
defined in the global (x,y,z) laminate coordinate system,
is written explicitly as

�%kj ¼ C% kij"%
k
j for ði; j ¼ 1; 2; 3; 4; 5; 6Þ: ðA8Þ
Combinding Eqs. (A1)–(A8), it can be shown that the
lamina stiffness matrix elements, C% kij, can be expressed
explicitly in terms of the principal lamina stiffness
matrix elements and the ply orientation angle, y,
through the following expression

C% kij ¼ T 
ð Þ½ 



ijC

0
ijk T 
ð Þ½ 


"
ij

n o�1
ðA9Þ

Through Eqs. (A3),(A5),(A7) and (A9), the lamina
stiffness matrix elements can be explicitly expressed in
terms of the lamina engineering constants and ply
orientations.
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